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Abstract

A novel method is presented for robustly simulating coupled dynamics in fluid–body interactions with vorticity-based
flow solvers. In this work, the fluid dynamics are simulated with a viscous vortex particle method. In the first substep of
each time increment, the fluid convective and diffusive processes are treated, while a predictor is used to independently
advance the body configuration. An iterative corrector is then used to simultaneously remove the spurious slip – via vor-
ticity flux – and compute the end-of-step body configuration. Fluid inertial forces are isolated and combined with body
inertial terms to ensure robust treatment of dynamics for bodies of arbitrary mass. The method is demonstrated for
dynamics of articulated rigid bodies, including a falling cylinder, flow-induced vibration of a circular cylinder and free
swimming of a three-link ‘fish’. The error and momentum conservation properties of the method are explored. In the case
of the vibrating cylinder, comparison with previous work demonstrates good agreement.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A large class of problems in nature and technology involves an inherently unsteady and coupled interaction
between fluid and a flexible structure. An intriguing subset of this class is characterized by large-scale defor-
mation of the structure in response to the external, inertial/elastic and fluid dynamic forces it experiences. Rep-
resentative problems in this subset include locomotion of aquatic organisms and similarly inspired vehicles,
the aerodynamics of flexible wings (e.g. in insects or microscale aerial vehicles), and cardiovascular flows.
In many of these problems, the dynamics of both entities are inextricably bound, and both the nonlinear
and viscous behavior of the fluid are essential – that is, the full unsteady Navier–Stokes equations must be
solved simultaneously with the (possibly nonlinear) elasticity equations of the body.
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Indeed, these coupled problems have, for some time, provided motivation for the development of compu-
tational algorithms which address such fluid-structure interaction in a fundamental fashion. A significant
source of progress in this context has been in the field of computational aeroelasticity [10], in which the over-
arching goal is to predict the response of an elastic wing to unsteady fluid loading. It has become common in
such analyses to join independently-developed codes for resolving the fluid and structural dynamics. This
approach is natural, since the solvers devoted to each component have been developed and refined over several
years. Thus, the coupled method’s overall stability is determined by the means of time synchronization and
exchange of information at the interface. To avoid full regeneration of the fluid grid in response to the moving
and deforming boundary, many researchers have made use of moving grid techniques, such as Arbitrary
Lagrangian Eulerian (ALE) [7] and transfinite interpolation [13] methods.

In the most basic sense, the physical coupling between the fluid and body can be described schematically as
in Fig. 1. The fluid and body evolution are joined by kinematic (velocity) and dynamic (force) constraints at
their interface. It is important to note that there is no cause and effect in this relationship, but merely a con-
dition that all interface constraints be consistently met at the end of each time increment. Thus, the sense of
the arrows in the loop depicted in Fig. 1 is arbitrary, and can just as well be reversed. The computational meth-
odology applied to such a problem must be respectful of this consistency condition in order to provide an
accurate and stable solution. The present work will introduce a novel and high-fidelity approach for simulat-
ing these interactions based on the relationship between vorticity creation and the interaction forces at the
fluid–body interface.

It is worth noting that, for problems in the inviscid limit (that is, when dissipation in the system is absent), it
is possible to avoid consideration of the fluid–body interaction force altogether, and treat the fluid and body as
a single extended system. The effect of the inertial force exerted by the fluid on an accelerating body can be
expressed in terms of a time-varying added mass, leading to a single set of dynamical equations for the com-
bined system. This approach has been successfully demonstrated in a recent study of inviscid locomotion by
Kanso et al. [11]. Within this inviscid framework, it is also possible to introduce simple models for vorticity
shedding, via a Kutta condition for example, and track the motions of the resulting vortex singularities.

In the problems of interest in the present study, the inertial and viscous processes are equally important,
and viscous action at the fluid–body interface generates vorticity that is diffused into the adjacent fluid. Thus,
energy is continuously exchanged with the fluid and eventually dissipated by viscous processes. For moderate
to large Reynolds numbers (say, greater than 10), the vorticity-bearing fluid occupies only a small fraction of
the region in which the velocity and pressure are nonzero. The present numerical methodology exploits, to the
extent possible, the computational efficiency that is inherent to this behavior. The algorithm is an extension of
the viscous vortex particle method (VVPM) [6,12,16], in which the Navier–Stokes equations are solved in a
particle form by the convection and diffusion of blobs of vorticity. In the VVPM, spurious slip between the
fluid and solid is identified with an equivalent vortex sheet, and then annihilated by diffusing this sheet to adja-
cent vortex particles. The interactions between vortex particles automatically account for the correct behavior
of the velocity at infinity; thus, computational elements are needed only where vorticity is nonzero.

The algorithm presented here is wrapped around the VVPM, and in essence follows the sense of fluid–body
coupling depicted in Fig. 1. However, the kinematic constraint of the no-slip condition is expressed in terms of
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Fig. 1. Schematic of coupling between fluid and body motion.
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Fig. 2. Schematic of coupling in present algorithm.
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vorticity creation, and the impulse associated with newly-fluxed vorticity contributes directly to the reaction
force on the body; the viscous contribution to the force is expressed in terms of vorticity. This modified cou-
pling is depicted in Fig. 2. In the first fractional step, the fluid is allowed to evolve independently (via convec-
tion and diffusion of the particles). To enable a consistent satisfaction of the kinematic and dynamic interface
conditions at the end of the time step, a predictor–corrector scheme is used in which each corrector iteration
for the new body configuration causes a trial vortex sheet to be fluxed to the particles. The resulting fluid force
is used to update the body in the subsequent iteration. This procedure is carried out until convergence at each
time step. To ensure robustness for any choice of body mass (including massless bodies), a virtual fluid inertia
matrix is identified and added to the body inertia in the corrector equation. This approach extends a similar
approach used by Shiels et al. [18] in their vortex method study of flow-induced vibration of massless bodies.

Though the resolution of the solid phase mechanics presents its own set of challenges, the focus of this work
is on the solution in the fluid domain. Thus, in the examples presented in this work, the body mechanics are
represented by a low-degree-of-freedom set of linked rigid bodies. However, the procedure that is described
here holds equally well for more general body mechanics. The mathematical basis for the coupling method-
ology, as well as details of the implementation, are described in Section 2. Fluid dynamic forces and moments
are expressed in a vorticity-explicit form in Section 2.1. The equations for the body dynamics, and in partic-
ular, their formulation for linked rigid bodies – which provide simple models for some biological systems – are
described in Section 2.2. The algorithm of the method is illustrated in Section 2.4 for use in conjunction with
the vortex particle method, and its use with other flow solvers is briefly discussed. In Section 3, the method is
applied to illustrative problems involving two-dimensional rigid body motion. Numerical accuracy of the algo-
rithm is evaluated on these example problems. Conclusions and future directions are discussed in Section 4.

2. Methodology

In this section, the algorithm and the details of its implementation will be described. The focus of this sec-
tion is on the relationship between the body dynamics, the forces and moments exerted by the fluid, and the
enforcement of interface conditions. Many of the details of the viscous vortex particle method (VVPM), which
comprises the Navier–Stokes component of the interaction, will be omitted here; the reader is referred to pre-
vious work [3,6] for further information.

2.1. Fluid forces

The force and moment that a fluid exerts on a surface are generally expressed in terms of the integrated
pressure and viscous stress. However, for incompressible flows, the viscous (resistive) component can easily
be expressed in terms of vorticity, x, and the pressure (reactive) contribution can be formulated in terms of
vorticity flux, the buoyancy, and the displaced fluid inertia. The resulting expression for the force exerted
by a fluid of density qf and viscosity l, in two-dimensional problems, is
F f ¼ l
I

S
ðx� XÞ � ox

on
� n� x

� �
ds� qfAg þ qf A _U ; ð1Þ
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where X is the body centroid position and ð_Þ denotes differentiation with respect to time. Similarly, the mo-
ment about an axis passing through XC (a point in arbitrary motion) is
M f jC ¼ l
I

S
ðx� XCÞ �

1

2
ðx� XCÞ �

ox

on
� n� x

� �
ds� 4lAX� ðX � XCÞ � qfAg

þ qf 2Bþ AjX � XCj2
� �

_Xþ ðX � XCÞ � qf A _U : ð2Þ
The unit surface normal, n, is directed into the fluid. The body is assumed to be rigid, and A denotes its area
and B its second area moment of inertia. The linear and angular velocity of the body are represented
by U ¼ ðU ; V Þ and X ¼ Xez, respectively. In this paper, the vector and scalar representations of axial vec-
tors such as angular velocity and the moment will be used interchangeably, for the sake of mathematical
brevity.

The surface vorticity is calculated by differentiating the stream function field, x ¼ �o2w=on2, with a 3rd-
order-accurate formula at the wall [6]. The surface vorticity flux, �mox=on (where m ¼ l=qf ), on the other
hand, is computed by relying on the physical mechanism through which vorticity is created in the VVPM.
In each timestep, the simultaneous evolution of the body and fluid leaves a spurious slip velocity, uslip (a non-
vanishing velocity of the fluid relative to the local body velocity at the solid surface). The slip can be identified
with a vortex sheet with strength distribution c ¼ n� uslip, that must be instantly diffused into the surrounding
fluid in order to satisfy the no-slip condition at the end of the timestep [14]. Using Kelvin’s circulation theo-
rem, the vorticity flux (the rate at which new vorticity is created) can be equated to the rate of disappearance of
the spurious sheet over a time interval Dt, that is, �mox=on ¼ c=Dt. Subsequent to the diffusion of the sheet,
the force and moment can be calculated with the corresponding terms in (1) and (2) replaced with this formula,
leading to
F f ¼ Fcx � qf Ag þ qf A _U ; ð3Þ

M f jC ¼M cxjC � ðX � XCÞ � qfAg þ qfð2Bþ AjX � XCj2Þ _Xþ ðX � XCÞ � qfA _U ; ð4Þ

in which, for later convenience, we have defined Fcx and M cxjC to represent the contributions of the viscous
terms and the vortex sheet
Fcx ¼ �qf

I
S
ðx� XÞ � c

Dt
þ mn� x

h i
ds; ð5Þ

McxjC ¼ �qf

I
S
ðx� XCÞ �

1

2
ðx� XCÞ �

c

Dt
þ mn� x

� �
ds� 4lAX: ð6Þ
Expressions (3) and (4) are physically enlightening, particularly in the representation of the reaction force.
When a body is accelerated from rest in a stagnant fluid, the impulse associated with the instantaneous appear-
ance of a surface vortex sheet, in combination with the displaced fluid inertia, collectively account for the reac-
tion of the fluid. In an inviscid problem, this reaction can be represented in terms of acceleration of a virtual
mass of fluid. In a viscous problem, the vortex sheet is instantly diffused into the surrounding fluid, and
thenceforth its effect is felt through its contribution to shear stress, as well as indirectly through the convection
and diffusion of vorticity within the fluid.

Even in a viscous problem, terms that resemble the virtual inertia can be identified in expressions (3) and
(4). Such an identification was made by Shiels et al. [18], who exploited it to investigate the flow-induced vibra-
tion of a cylinder when the intrinsic mass of the cylinder vanishes. The identification is made here in the same
spirit, in anticipation of the time marching algorithm to be presented in Section 2.4. First, the terms propor-
tional to dU=dt, dV =dt and dX=dt are obvious contributors of fluid inertia. In addition, it is recalled that the
vortex sheet strength on body j, cðjÞ, represents the spurious slip that results when the fluid vorticity and the
bodies evolve independently in a given time step. As such, this strength can be linearly decomposed into a por-
tion cðjÞx due entirely to the vorticity-induced velocity when the bodies are instantaneously brought to rest in
this step, and independent portions from each body’s three velocity components in otherwise quiescent fluid
(since motion of any single body will give rise to a vortex sheet on every body). This decomposition can be
written as
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cðjÞ ¼ cðjÞx þ
XNb

l¼1

ðcðjÞU ;lU l þ cðjÞV ;lV l þ cðjÞX;lXlÞ ð7Þ
for a system with N b bodies. This expression implies a similar decomposition in the fluid force and moment
from the vortex sheet reactions in (5) and (6). For example, we can write the x component of Fcx on body j as
F cx
x;j ¼ �qf

I
Sj

ðy � Y jÞ
cðjÞx

Dt
þ mnyx

� �
ds� 1

Dt

XNb

l¼1

ðM�
Ux;ljUl þM�

Vx;ljV l þM�
Xx;ljXlÞ: ð8Þ
The first term represents the x component of the force on body j that would be felt if all bodies were
brought to rest in interval Dt. The inertial role of the contributions from the unit vortex sheet components
in (7) has been explicitly identified here, for example
M�
Ux;lj ¼ qf

I
Sj

ðy � Y jÞcðjÞU ;l ds: ð9Þ
This coefficient (when divided by �Dt) approximately represents the x component of the reaction force felt
on body j when body l 6¼ j is accelerated from rest to unit velocity in the x direction. When l ¼ j, the fluid
inertia displaced by the body (from the final term in Eq. (3)) must be subtracted from the coefficient to give
similar interpretation. Similar expressions can be found for F cx

y;j and M cx
j jC, giving rise to 9N 2

b such inertial
coefficients. However, when constraints between linked bodies are accounted for, as they will be below, this
total is reduced considerably.

2.2. Body dynamics

The objective of this section is to develop dynamical equations for two classes of problems of interest in this
work: free swimming of a linked system and prescribed flapping of a multicomponent wing with passive elastic
hinges. For the first class, the angles of the hinges are prescribed (to mimic, for example, the undulating back-
bone of an elongated fish), and the locomotion of the system must be solved for. In the second class, the
motion of a certain reference point is prescribed (for example, by the attached musculature of an insect wing),
and the hinge deflections must be solved for. Once the linkage constraints are accounted for, the state vector of
the free swimming problem is reduced to the configuration and rate of change of a reference body in the sys-
tem, and the input vector is the set of hinge angular velocities; in the flexible flapping problem, these roles are
reversed.

Consider a set of Nb rigid bodies immersed in the fluid. Each body’s configuration is described by the position
of its centroid, X j ¼ ðX j; Y jÞ, in an inertial coordinate system, and its angle with respect to the positive x axis, aj,
which are written together as a configuration vector, X j ¼ ðX j; Y j; ajÞT. The rate of change of this configuration
is determined by the body velocity, U j ¼ ðU j; V j;XjÞT. The uniform density of body j is denoted by qj.

We suppose in this development that these bodies form a linked system (see Fig. 3), connected by
Nh ¼ N b � 1 virtual hinges at Xh

j ¼ ðX h
j ; Y

h
j Þ that may be composed of passive torsion springs and dampers

or actively manipulated ‘motors’ that control the angle of the hinge. The bodies are numbered sequentially
from 1 to N b, and the hinges between them from 1 to N h. It is noted that the configuration of the system
can be entirely described by Nh þ 3 values: the configuration of a reference body (denoted by index k) and
the Nh hinge angles. The development of dynamical equations for two classes of problems – free swimming
of an articulated fish, and flapping of a multi-component wing – is described in detail in the Appendix.
The equations are summarized here.

For free swimming, the system of linked bodies is subject only to the fluid dynamic forces and elastic/damp-
ing forces from springs attached to the reference body components; the hinge angles are prescribed functions
of time. The dynamical equations are expressed in terms of the rates of change of position and velocity of ref-
erence body k
_X k ¼ Uk; ð10Þ
Mk

_Uk ¼ �Mhk
€Hþ F f

k þ J k þ Gk �KkðX k � X k0Þ � RkUk; ð11Þ
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Fig. 3. Diagram of linked system of bodies.
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where Mk and Mhk are 3� 3 and 3� Nh inertia matrices, respectively. The first term on the right-hand side of
(11) represents the hinge forcing, and H is a column array of hinge angles. Furthermore, F f

k represents collec-
tive forces and moments exerted by the fluid; J k contains centrifugal forces; Gk is the net gravity and buoyancy
contribution; and Kk and Rk are diagonal matrices with spring stiffnesses and damping coefficients applied on
the respective components of the reference body (about an equilibrium designated by X k0).

In a flexible multi-component wing, we are interested in solving for the hinge deflection angles in response
to prescribed motion of the reference body. The resulting equations are
Mh
€H ¼ �Mkh

_Uk þ F f
h þ J h þ Gh �KhðH�H0Þ � Rh

_H: ð12Þ

Most of the terms have interpretation analogous to the free-swimming problem. In addition, Kh and Rh are

Nh � N h diagonal matrices of spring stiffnesses and damping coefficients, respectively, about equilibrium hinge
angles, H0.

Note that it is also possible to ‘mix’ the problems, for example by designating individual hinges and refer-
ence body components as ‘active’ or ‘passive’. Such a mix may be important for investigations of autorotation
phenomena in flexible flapping or passive extraction of energy by a flexible swimmer.

2.3. Extraction of fluid inertial forces

The implicit time marching algorithm to be presented in this work is made significantly more robust – in
terms of its iterative convergence in each time step – by identifying additional inertial terms in the fluid forces
and combining them with the body inertial terms. This identification was made in Eq. (8) for individual bodies,
and is extended here to linked systems. The extension is based on the observation that the linkage constraints
allow the vortex sheet decomposition (7) to be written as
cðjÞ ¼ cðjÞx þ cðjÞU Uk þ cðjÞV V k þ cðjÞX Xk þ
XNh

l¼1

cðjÞh;l:
_hl: ð13Þ
In turn, the original 9N 2
b inertial coefficients arising from the reactions to the 3N 2

b unit vortex sheets reduce
to 3Nbð3þ NhÞ coefficients from reactions to the new set of Nbð3þ NhÞ sheets.

We can thus write the overall fluid force array – either F f
k or F f

h in equation (11) or (12), respectively – in a
general form
F f ¼ Fx �M�Uk=Dt �M�
h

_H=Dt �M�� _Uk �M��
h

€H� J f : ð14Þ

The component Fx in (14) represents the force and moment due to the viscous shear stress, as well as the

reactions from cðjÞx on each body – in other words, the force and moment that would arise after all bodies are
brought to rest in the interval Dt. The M� and M�

h matrices derive from the reactions to the unit vortex sheets
in (13), as manifested in coefficients such as (9). These reactions, once computed, are subsequently used in the
force arrays in (A.28) or (A.37) to form the three columns of M� and Nh columns of M�

h.
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The M�� and M��
h matrices arise from the terms proportional to acceleration in the fluid force (3) and

moment (4) expressions. They are nearly identical in structure (with opposite sign) to the corresponding body
inertia matrices, M and Mh, except for additional contribution from the impulse of vorticity inside the bodies.
For example, for free swimming problems, these inertial matrices are
M��
k ¼ �

X
j

qf

Aj 0 �AjðY j � Y kÞ
0 Aj AjðX j � X kÞ

�AjðY j � Y kÞ AjðX j � X kÞ 2ðBj þ AjjX j � Xkj2Þ

0B@
1CA ð15Þ
and
M��
h ¼ �

�R0M0
fHyðkÞ

R0M0
fHxðkÞ

R0M0
fðDb0

x HxðkÞ þDb0

y HyðkÞÞ þ R0½2I0f þM0
fððDb0

x Þ
2 þ ðDb0

y Þ
2Þ�SðkÞ

0B@
1CA; ð16Þ
where M0
f and I0f are Nh � Nh diagonal matrices containing, respectively, the mass and moment of inertia of the

fluid displaced by all non-reference bodies. The remaining quantities are defined in the Appendix. The final
term in Eq. (14), J f , contains centrifugal-like forces, with the same form as the J terms in (A.28) or
(A.36), though with M0

f replacing M0.
It is also useful to group the first three terms in (14) in a single term, F cx – analogous to the similarly-named

terms in the force and moment expressions for a single body (3) and (4) – containing forces and moments from
the complete surface vortex sheets (i.e. the vorticity flux impulse) and the viscous effects:
F cx ¼ Fx �M�Uk=Dt �M�
h

_H=Dt: ð17Þ
2.4. Algorithm description

The numerical algorithm utilized for advancing the system of fluid and bodies is described here. As in pre-
vious implementations of the viscous vortex particle method [12,6], a fractional step algorithm is used to split
each time increment into two substeps devoted to fluid evolution (convection and diffusion of vorticity) and
boundary condition enforcement (elimination of the spurious vortex sheet), respectively. The body dynamics
are advanced with a second-order predictor–corrector method. The first substep of the fluid algorithm is car-
ried out simultaneously with and independently from the predictor of the body dynamics. Because of the con-
sistency condition between the fluid–body interaction force and the no-slip condition, the corrector of the
body dynamics is performed simultaneously (that is, iteratively) with the flux of surface vorticity. Thus, at
the end of a given time step, the new vorticity created is consistent with the final configuration of the bodies.

Note that, in the VVPM, the instantaneous state of the fluid is completely described by the positions and
strengths of the Np vortex particles, PðtÞ ¼ fðxpðtÞ;CpðtÞÞ; p ¼ 1;Npg. This state is advanced by integrating the
Navier–Stokes equations, which in the VVPM are described in a Lagrangian (particle-based) form. The details
of these equations can be found in previous work [6]; here, they are represented symbolically as
_P ¼ N ðP;B;HÞ: ð18Þ

The dependence of these equations on the body configurations (expressed through B ¼ ðX ;UÞ, H and their

derivatives) arises solely through the influence of body rotation on the convection of particles, via the Biot–
Savart integral. In the implementation of the VVPM in [6], the exchange of particle strengths to simulate vis-
cous diffusion is carried out without explicit enforcement of a boundary condition on the body surfaces, and
thus the diffusion step is unaffected by the body configuration.

The body evolution equations take alternative forms depending on the class of problem under study: (10)
and (11) for free swimming or (12) for flexible flapping, or possibly a mix of the two. The time marching algo-
rithm is demonstrated here for the free swimming equations, but the approach holds equally well for a flexible
multi-component wing, with the roles of Uk and _H switched. For brevity, the subscript k is suppressed, and the
equations are written with the help of (14) and (17) in the form



J.D. Eldredge / Journal of Computational Physics 227 (2008) 9170–9194 9177
_X ¼ U; ð19Þ
ðMþM��Þ _U ¼ �ðMh þM��

h Þ €Hþ F cx þ eG ; ð20Þ
where eG ¼ J � J f þ G �KðX � X 0Þ � RU.
The predictor–corrector scheme to be presented here for the body dynamics is designed to ensure robust-

ness for any choice of body mass. We first multiply both sides of the dynamics Eq. (20) by the inverse of the
body inertia matrix, ðMþM��Þ�1. It is important to note that there is no reason to assume that this matrix is
in fact invertible; indeed, we allow for the possibility that the constituent bodies are neutrally buoyant, in which
case this matrix becomes singular. We only make the inversion here for demonstrative purposes, and will never
rely on such an inversion in the actual algorithm. Formally, the coupled set of six ordinary differential equa-
tions for the reference body configuration and velocity can be written as
_B ¼ DðB;H;PÞ; ð21Þ

where the influence of the particle configuration arises through the fluid force F cx in (20). Note that the argu-
ment H denotes dependence on the prescribed hinge angles and all their time derivatives. A second-order-accu-
rate predictor–corrector scheme is used to advance this equation from time tn to the next step, tnþ1 ¼ tn þ Dt.
The predictor is an explicit Euler step
Bð0Þ ¼ Bn þ Dt _Bn: ð22Þ
The second-order-accurate corrector is designed to allow a full body/fluid inertia matrix to multiply the new
velocity Unþ1. To ensure this, an extra time level is used, and the algorithm is
Bnþ1 ¼ 2Bn � Bn�1 þ Dtð _Bnþ1 � _BnÞ: ð23Þ

The three position equations in this set are straightforward; we focus here on manipulating the three velocity
equations. Each term in these velocity equations is multiplied by Mnþ1 þM��

nþ1:
ðMnþ1 þM��
nþ1ÞUnþ1 ¼ ðMnþ1 þM��

nþ1Þð2Un � Un�1 � Dt _UnÞ þ DtðMnþ1 þM��
nþ1Þ _Unþ1: ð24Þ
The last term can be replaced with the dynamics Eq. (20), and we make use of the force decomposition (17) to
bring the virtual inertia matrix M�

nþ1 to the left-hand side:
Mnþ1Unþ1 ¼ ðMnþ1 þM��
nþ1Þð2Un � Un�1 � Dt _UnÞ þ Dtð�Mh;nþ1

€Hnþ1 þ Fx
nþ1 þ eGnþ1Þ; ð25Þ
where for convenience, we have defined the total body/fluid inertia matrix, M ¼MþM� þM��, and a similar
matrix, Mh, for the hinge inputs. This implicit corrector equation for Unþ1, together with the position equation,
can be solved iteratively with the form
X ðmþ1Þ ¼ 2X n � X n�1 þ DtðU ðmÞ � UnÞ; ð26Þ

U ðmþ1Þ ¼ ðI �M�1
ðmÞM

�
ðmÞÞð2Un � Un�1 � Dt _UnÞ þ DtM�1

ðmÞð�Mh;ðmÞ €Hnþ1 þ Fx
ðmÞ þ eG ðmÞÞ; ð27Þ
where I is the 3� 3 identity matrix.
Eqs. (26) and (27) represent the primary contribution of this work. Note that the steps leading to them are

followed analogously, with the roles of ðH; _HÞ and ðX ;UÞ switched, to develop an equivalent corrector for a
flexible multi-component wing. The important feature of the equations is that the total inertia matrix, M, is
non-singular for any body mass. The sum of matrices M� and M�� is positive definite (together, they represent
the virtual mass of the surrounding fluid when vorticity is absent). This feature is critical for robust simulation
of bodies of any intrinsic mass. We iterate until the velocity error, defined by
�ðmþ1Þ ¼ max jU ðmþ1Þ � U ðmÞj; ð28Þ
(where the maximum is taken over the three components) falls below a certain threshold. The threshold, which
clearly determines how many iterations are necessary, is generally chosen to be 10�3Dt.

In lieu of a formal proof, we demonstrate the algorithm robustness on the example of a circular cylinder
that is allowed to move freely in the y direction, transverse to a uniform free stream. Eq. (27) for the transverse
velocity at time tnþ1 reduces to
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V ðmþ1Þ ¼
q1

q1 þ qf

ð2V n � V n�1 � Dt _V nÞ þ
Dt

ðq1 þ qfÞA1

F f
y;ðmÞ þ

qf

q1 þ qf

V ðmÞ; ð29Þ
where we have used Eq. (14) and a second-order extrapolation for the acceleration (consistent with (23)) to
substitute the force F x

y with the full fluid force F f
y . The velocity error is therefore governed by
�ðmþ1Þ ¼
qf

q1 þ qf

þ Dt
ðq1 þ qfÞA1

oF f
y

oV

�����
������ðmÞ: ð30Þ
For convergence, the factor on the right-hand side must be less than unity. The first term in the factor is, at
most, unity, when the density of the cylinder vanishes. The second term is always negative, as the fluid force
acts opposite the direction of cylinder motion. Thus, convergence is ensured for all choices of body mass.

The slowest convergence arises in problems involving massless bodies, for which four to six iterations are
generally necessary; in neutrally buoyant or heavier bodies, only two or three are needed. We will demonstrate
the convergence of this iterative form of the equation in the example problems of Section 3.

2.4.1. Initialization

At the start of a simulation, the fluid and bodies are presumed to be at rest. When the system input (either
hinge angle actuation for free swimming, or reference point motion for a flexible wing) is instantly activated at
t ¼ 0, the velocity components in the companion state vector are automatically determined by consideration of
conservation of momentum. First, it is noted that the impulsive reaction from the fluid is, through Eq. (17)
Z 0þ

0�
F cx dt ¼ �M�Uð0þÞ �M�

h
_Hð0þÞ ð31Þ
for either class of problem. Thus, upon integrating either dynamical Eq. (11) or (12) over this infinitely short
interval, one arrives at a relation between the initial reference body velocity and the initial hinge angular
velocities
ðMþM� þM��ÞUð0þÞ þ Mh þM�
h þM��

h

� �
_Hð0þÞ ¼ 0: ð32Þ
The initial velocities in the state vector (either U or _H) are determined from this relation, and the remaining
body velocities are determined through the linkage constraints. In turn, vortex sheets are identified with the
resulting slip on the bodies, and each sheet is diffused into the fluid to form the initial vorticity field, P0.

2.4.2. Algorithm summary

The procedure for advancing the state of the bodies and fluid from tn to tnþ1 ¼ tn þ Dt is summarized here:

Substep 1: Fluid evolution

The particle state vector Pn is advanced to an intermediate value, ~Pnþ1, by integrating Eq. (18)
with an explicit fourth-order Runge–Kutta scheme. However, in each Runge–Kutta stage, the
body configurations are held at their initial values, X n and Un.

Substep 10: Body predictor

Simultaneously with substep 1, the predictor is computed
Bð0Þ ¼ Bn þ Dt _Bn: ð33Þ
Substep 2: Body evolution/vorticity creation

The final fluid state, Pnþ1, is composed of the convected and diffused field from substep 1, plus a
correction field, DP ¼ fð0;DCpÞ; p ¼ 1;N pg, which represents vorticity creation to enforce the
no-slip condition. Thus, the solutions for DP and Bnþ1 are solved simultaneously, via the cor-
rector Eqs. (27) and (26), as follows:
(2a) Fluid correction field computed

Based on the current body configuration, BðmÞ, the correction field DPðmÞ is computed in
two parts to eliminate the spurious slip at the fluid–body interface. The usual treatment
of the VVPM – to identify the strengths of the equivalent surface vortex sheets, and diffuse
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these sheets to the adjacent vortex particles – is utilized here to eliminate this slip. This
approach leads to sheets of strength cðjÞ, j ¼ 1; . . . ;Nb, which, when diffused, collectively
provide DPðmÞ. Note that the solution for each cðjÞ is carried out with a boundary element
method, with the additional constraints imposed by Kelvin’s circulation theorem
I

Sj

cðjÞ ds ¼ �2AjðXðmÞ;j � Xn;jÞ ð34Þ

for each body, and the correction strengths are explicitly forced to satisfy,P
pDCðmÞ;p ¼ �2

P
jAjðXðmÞ;j � Xn;jÞ, to maintain conservation of global circulation. The

reader is referred to [6] for details. Also, for purposes of computing the fluid inertia matrices
M�
ðmÞ and M�

h;ðmÞ, each component sheet in the decomposition (13) is computed separately.

(2b) Corrector iteration

The current body configuration, BðmÞ, the corrected vorticity field, ~Pnþ1 þ DPðmÞ and compo-
nent vortex sheet strengths are used to compute the terms on the right-hand side of the veloc-
ity corrector (27). The corrector Eqs. (26) and (27) are then evaluated for Bðmþ1Þ. In the first
time step, we setB�1 ¼ B0 � Dt _B0, and the evolution equations revert to first-order-accurate.

(2c) Convergence check

The convergence is checked via the velocity error defined in (28). If not yet converged, the
correction vorticity field DPðmÞ is removed from the vortex particles and the algorithm
returns to (2a). If converged, then compute one last correction field, DPðmþ1Þ and set
Bnþ1 ¼ Bðmþ1Þ and Pnþ1 ¼ ~Pnþ1 þ DPðmþ1Þ, and stop.

Substep 3: Final acceleration vector

The end-of-step acceleration vector _Unþ1 is computed from the second-order extrapolation
formula
_Unþ1 ¼
1

Dt
ðUnþ1 � 2Un þ Un�1Þ þ _Un ð35Þ

for free swimming. An analogous expression is used for computing €Hnþ1 for flexible wing
problems.
Numerical convergence of error in this algorithm will be demonstrated for individual example problems in
Section 3.

It is appropriate to point out here how the two crucial elements of this algorithm – simultaneous enforce-
ment of the no-slip condition and evolution of body dynamics, and reliance on virtual fluid inertia for iterative
convergence robustness – might be used in conjunction with other flow solvers. The first element fits naturally
with other vorticity-based flow solvers. For example, the algorithm presented here would be relatively
unchanged for the vorticity–streamfunction algorithm introduced by Calhoun [1], in which jumps in vorticity
and vorticity flux at the surface are utilized in an immersed interface method to enforce kinematic boundary
conditions. The vortex-in-cell method developed by Cottet and Poncet [4] and the vorticity-based Cartesian
grid algorithm of Russell and Wang [17] would also readily admit the treatment presented here. With some
minor modifications, the approach could also be used in conjunction with primitive variable formulations,
particularly those in immersed boundary methodologies, since their calculation of the force distribution to
enforce the kinematic boundary conditions could be carried out simultaneously with the evolution of body
configuration. Taira and Colonius [19] have recently presented an immersed-boundary fractional step algo-
rithm that has particularly intriguing possibilities in this regard.

The iterative robustness through virtual inertia can also be extended to other flow solvers. Though the algo-
rithm appears to rely on a force decomposition peculiar to vortex particle methods, it can be arrived at in an
alternative fashion. One would start from Eq. (24) without the M��

nþ1 factor, substitute the final term with the
dynamics Eq. (11), and simply add ðM�

nþ1 þM��
nþ1ÞUnþ1 to each side of the equation (using the previous iteration

level on the right side, and the next level on the left-hand side). A similar iterative scheme to (26) and (27)
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results, but the fluid force and moment appear in their non-decomposed form, thus permitting the scheme’s use
with other fluid solvers. The calculation of M�, though, generally requires an auxiliary potential flow solver.

2.5. Momentum diagnostics

Global linear and angular momenta may serve as useful diagnostics for evaluating any coupled time-march-
ing algorithm, particularly in cases in which the externally-applied forcing is known or absent. In vorticity-
based methods, the global momentum components have simple expressions in terms of moments of vorticity
[22]. For example, the linear components of body/fluid momentum are
ðRM ;x;RM ;yÞ ¼
X

j

ðqj � qfÞAjðU j � gtÞ þ qfP; ð36Þ
where P is the linear impulse of vorticity in the fluid and bodies:
P ¼
Z

Af

x� xdxþ 2
X

j

AjX j �Xj: ð37Þ
Similarly, the out-of-plane component of global angular momentum (about the centroid of the reference body
k) is
RM ;ang ¼
X

j

ðqj � qfÞfAj½ðX j � XkÞ � ðU j � gtÞ�z þ BjXjg �
1

2
qfb

����
k

; ð38Þ
where bjk is the angular impulse of vorticity in the fluid and bodies, evaluated about Xk:
bjk ¼
Z

Af

jx� Xkj2xdxþ 2
X

j

ðAjjX j � Xkj2 þ BjÞXj: ð39Þ
In deriving (39), it has been assumed that the global circulationZ

C ¼

Af

xdxþ 2
X

j

AjXj; ð40Þ
vanishes. By Kelvin’s circulation theorem, this is true for any system started from rest; furthermore, the vor-
ticity flux method used in this work guarantees discrete conservation, as well (for confirmation, the reader is
referred to [6]). In fact, in the absence of external forcing – with the exception of gravity – a system initially at
rest will maintain
RM ;x ¼ 0; RM ;y ¼ 0; RM ;ang ¼ 0: ð41Þ

However, in contrast to circulation, the discrete versions of these global momenta will generally have non-

zero residual values, and these residuals serve as numerical diagnostics. It is also possible to define a ‘momen-
tum error’
�momðT Þ ¼
1

N þ 1

XN

n¼0

R2
M ;xðtnÞ þ R2

M ;yðtnÞ
� �" #1=2

; ð42Þ
where N is chosen such that tN ¼ T . In the next section, the coupled time-marching algorithm developed in
Section 2.4 will be evaluated with the use of these momentum diagnostics.

In passing, it is noted that the expressions (36) and (38) for momenta have been specialized to rigid bodies,
as the rest of this paper has, but can also be written for more general body deformation.

3. Results and discussion

In this section, the coupled fluid–body time marching algorithm presented in Section 2.4 is applied to three
representative problems, the last of which is designed as an abstraction of biological locomotion mechanics.
The first problem involves a circular cylinder falling under its own weight in a viscous fluid. The second prob-
lem, the flow-induced vibration of a circular cylinder, is used as a validation exercise and the results are com-
pared with previous work. The second problem is the free swimming of an articulated three-link ‘fish,’ which
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was previously studied in an inviscid medium by Kanso et al. [11]; here, the influence of viscosity is accounted
for. An example of the method applied to a flexible multi-component wing has not been included here for
brevity; however, such an application is the subject of a current effort by the author [20,21].

In all cases, the VVPM is applied in the same form used in previous work [6]. In particular, computational
particles are initially arranged on a Cartesian grid with uniform spacing, and remeshed every four to six time
steps to the same grid. Particle population growth is controlled by a threshold �trim ¼ 2� 10�4 on a particle’s
circulation relative to the fluid viscosity.

3.1. Falling circular cylinder

Consider a circular cylinder of diameter D ¼ 1 and density q ¼ 2qf , released from rest in a fluid of viscosity
m ¼ 0:005 and a gravity field of strength g ¼ 1 in the negative y direction (that is, g1=2D3=2=m ¼ 200). The cou-
pled VVPM algorithm is applied with Dt ¼ 0:01 and uniform inter-particle spacing Dx ¼ 0:01; the surface of
the cylinder is discretized with Np ¼ 272 panels (the VVPM is not sensitive to this choice, provided that the
panel size is on the same order as Dx; see [6] for a discussion). No symmetry constraint was enforced in these
simulations. The wakes are not truncated in any fashion, to avoid the additional error that such a technique
would introduce. Consequently, simulations on a single workstation were limited to durations for which the
computational particle population was below roughly 5� 105.

The vorticity field produced by the falling cylinder is depicted at four instants in Fig. 4. It is noted that,
though the instantaneous Reynolds number VD=m reaches 260 during the course of the simulation, the wake
remains symmetric in the absence of explicitly-applied perturbation. As a consequence, the wake vortices are
stretched considerably in the process. The time histories of the position, velocity and acceleration of the cyl-
inder are depicted in Fig. 5(a)–(c). The initial reaction to acceleration is inviscid, associated with the impulse of
the spurious vortex sheet that appears on the cylinder surface. It is easy to show that the initial acceleration of
the body centroid is consequently given by
y

Fig. 4.
Vortic
_V ¼ q� qf

qþ qf

g; ð43Þ
which is consistent with the initial value of �1=3 observed in Fig. 5(c). The acceleration approaches zero,
though never reaches it during the course of the simulation. This slow approach to terminal velocity is likely
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ity contours have values from �10 to 10 in 40 uniform increments.
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attributable to lack of unsteady vortex shedding, which is generally present in free-falling experiments con-
ducted at similar Reynolds numbers [9]. It is well known that, in this unstable regime, the drag coefficient
of a circular cylinder is lower when the wake is symmetric and steady compared to its value at the same Rey-
nolds number with unsteady vortex shedding [8]. Moreover, the drag decreases with Reynolds number on the
steady branch, which would tend to increase the terminal velocity that is ultimately achieved.

The linear fluid impulse can be used to characterize the wake configuration. In particular, we define the x
component of the vorticity centroid as X V ¼ �P y=ð2CþÞ, where P y is the y component of the impulse (37) and
Cþ represents the total fluid circulation in the right-half plane
Cþ ¼ 1

2

Z
Af

jxjdx: ð44Þ
The evolution of this centroid coordinate is depicted in Fig. 5(d). The initial value of X V can be predicted
exactly from the impulse and circulation of the initial vortex sheet to be pD=8, in agreement with the simula-
tion results. After an initial rise and recovery, the centroid increases very slowly at a nearly constant rate.

From the global momentum balance in Eq. (36), this centroid coordinate can be alternatively computed
using ðq� qfÞAðV þ gtÞ=ð2CþÞ. The result from this alternative approach is also depicted in Fig. 5(d). A small
error persists between the two approaches. This error is associated with the momentum residual, RM ;y , which is
depicted in Fig. 6 after normalization by ðq� qfÞAgt. The residual remains negative and less than 0.01 in mag-
nitude throughout the simulation. It is important to check whether this momentum residual converges to zero
as the resolution of the simulation is increased. In Table 1 the momentum error �momð1Þ – normalized by the
rms value of ðq� qfÞAgt up to t ¼ 1 – is shown for four different values of time-step size, Dt. In each case, the
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Table 1
Momentum and differential trajectory errors for falling cylinder, evaluated up to t ¼ 1

Dt �momð1Þ �trajð1Þ
0.02 1:185� 10�2 3:429� 10�4

0.01 7:820� 10�3 8:798� 10�5

0.005 5:425� 10�3 1:896� 10�5

0.0025 3:945� 10�3 –
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inter-particle spacing is adjusted so that the numerical parameter mDt=Dx2 is held fixed at 1=2. It is easy to see
that this residual error indeed decreases as the resolution increases. However, the rate of convergence is slow,
approximately Dt0:5.

This slow convergence is attributable to particles nearest the body. The residuals contain error associated
with the cumulative transfer of momentum between the fluid and bodies during the course of the simulation.
However, it must also be noted that the calculation of the discrete versions of the vorticity impulses (37) and
(39) also contributes error, as each particle carries a finite distribution of vorticity, which generally overlaps
with the body in the body-adjacent particles. This overlap implies first-order accuracy in the surface treatment
[6], which implies half-order convergence in time.

It is natural to ask whether this slow convergence affects other quantities in the fluid–body interaction. To
assess this, we define a differential trajectory error, �traj, as
�trajðT Þ ¼
1

N þ 1

XN

n¼0

jY n
Dt � Y 2n

Dt=2j
2

" #1=2

; ð45Þ
which measures the least-squares difference in trajectory between successive choices of resolution; the final
time level, N, is chosen such that NDt ¼ T . This error is listed in the right-most column of Table 1 Richardson
extrapolation can be used to estimate that the order of convergence of this trajectory is approximately 2, which
is consistent with the seco